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Abstract Gamow vectors and resonances play an important role in scattering theory, es-
pecially in the physics of metastable states. We study Gamow vectors and resonances in
a time-dependent setting using the Borel summation method. In particular, we analyze the
behavior of the wave function ψ(x, t) for one dimensional time-dependent Hamiltonian
H = −∂2

x ± 2δ(x)(1 + 2r cosωt) where ψ(x,0) is compactly supported.
We show that ψ(x, t) has a Borel summable expansion containing finitely many terms

of the form
∑∞

n=−∞ ei3/2√−λk+nωi|x|Ak,ne
−λkt+nωit , where λk represents the associated reso-

nance. This expression defines Gamow vectors and resonances in a rigorous and physically
relevant way for all frequencies and amplitudes in a time-dependent model.

For small amplitude (|r| � 1) there is one resonance for generic initial conditions. We
calculate the position of the resonance and discuss its physical meaning as related to multi-
photon ionization. We give qualitative theoretical results as well as numerical calculations
in the general case.

Keywords Gamow vectors · Resonances · Borel summation

1 Introduction

Gamow vectors and resonances, introduced by Gamow to describe α-decay (cf. [1, 25]),
are very important mathematical tools in the study of metastable (or quasistable) states in
quantum mechanics (cf. [2]). The decay states described by Gamow vectors are also linked
to the Fermi-Dirac golden rule (cf. [9]). From a physical point of view, resonances show up
as “bumps” in some experimentally measured quantities such as the scattering cross-section
(see e.g. [16] and the references therein). Resonances also appear in the study of Stark effect,
two-body problem in atomic and molecular physics, etc. [17]. There are numerous defini-
tions of resonances and resonant states, using the scattering matrix, rigged Hilbert spaces,
Green’s function, etc. (cf. [9, 10] and the references therein). These definitions rely on the
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time-independent Schrödinger equation, though they may be extended to time-dependent
settings in a perturbative regime (cf. [3, 14, 16, 19]). Another less general but very effective
method of studying resonances is the complex scaling method [17, 18]. The above various
definitions are expected to be equivalent [19], and in certain cases the equivalence has been
established [20].

In a recent paper [27], the author and his collaborator gave a rigorous definition of
Gamow vectors and resonances for compactly supported time-independent potentials in one
dimension, using Borel summation (for a detailed description of Borel summation, see [8,
27]). Resonance expansions in one-dimensional time-dependent fields were also studied in
[26], though the results were not very explicit and Borel-summability were not proved. In
this paper, we study the resonances associated to a time-dependent periodic one-dimensional
delta potential and obtain a complete Borel-summable expansion. In our case, the Gamow
vector is of the form of the so-called Floquet ansatz (cf. [4, 26]). Our result holds for all am-
plitudes and frequencies of the time-dependent field. In the case of small amplitude or high
frequency, we calculate the resonances asymptotically, and the real part of the resonances
measures the ionization rate. In this sense, our paper extends the results of [5, 15]. As we
will see, time dependency introduces new subtleties and complex phenomena.

It is worth mentioning that the simple model we present here not only allows for explicit
calculation, but also contains many of the essential ingredients of the ionization process in
real systems [5]. For instance, it reproduce many features of the experimental curves for the
multiphoton ionization of excited hydrogen atoms by a microwave field.

2 Setting and Main Results

We consider the time-dependent one-dimensional Schrödinger equation

i�
∂

∂t
ψ(x, t) = − �

2m

∂2

∂x2
ψ(x, t) + V (x, t)ψ(x, t)

where the potential V (x, t) is a delta function potential well or barrier with a time-periodic
perturbation. In this paper, we consider two simple but illuminating cases:

(1) delta potential well V (x, t) = −2Aδ(x)(1 + 2r cosωt),
(2) delta potential barrier V (x, t) = 2Aδ(x)(1 + 2r cosωt).

Here A > 0 represents the strength of the potential, r represents the relative amplitude of
the perturbation and ω the frequency. Without loss of generality we take r > 0,ω > 0. We
further assume the initial wave function ψ0(x) := ψ(x,0) is compactly supported and C2

on its support.
We first normalize the equation by changing variables x → �

2mA
x, t → �

2

2mA2 t,ω →
2mA2

�2 ω. Note that this is more than using atomic units since we also used the special property
of the delta function δ(Ax) = δ(x)/A. The equation becomes

i
∂

∂t
ψ(x, t) = − ∂2

∂x2
ψ(x, t) ∓ 2δ(x)(1 + r cosωt)ψ(x, t) (1)

(where “−” corresponds to the delta potential well and “+” corresponds to the barrier). We
shall focus on the delta potential well and analyze in detail the behavior of the wave function
as well as the resonances of the system for all amplitudes and frequencies. The analysis of
the delta potential barrier is very similar and we will give the results in Sect. 4 without
detailed proofs.
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Theorem 2.1 Assume the initial wave function ψ(x,0) is compactly supported and C2 on
its support, then we have for all t > 0

ψ(x, t) =
K∑

k=1

∞∑

n=−∞
ei3/2√−λk+nωi|x|Ak,ne

−λkt+nωit

− 1

2πi

∞∑

n=−∞

∫ eiθ ∞

0
ei3/2√−q+nωi|x|+nωit−qtϕn(−q)dq

− 1

2πi

∫ eiθ ∞

0
F(x,−q)e−qtdq

where λk + nωi are resonances of the system (Re(λk) > 0), ϕ a ramified analytic func-
tion with square root branch points at every nωi (n ∈ Z), and F an explicit function with√

pF(p) analytic in
√

p. θ is a small angle chosen to ensure that no resonance lies on the
path of integration.

Moreover, the coefficients Ak,n satisfy the recurrence relation

(√−i
√

i + nωi − λk − 1
)

Ak,n = rAk,n−1 + rAk,n+1 (2)

and ψ(x, t) has the Borel summable representation

ψ(x, t) =
(

i3/2r

∫ ∞

−∞
ψ0(x)dx

)

t−1/2 +
∞∑

n=−∞

∞∑

k=0

Cn,k(x)enωit t−3/2−k

+
K∑

k=1

∞∑

n=−∞
ei3/2√−λk+nωi|x|Ak,ne

−λkt+nωit .

Corollary 2.1 For 1 ≤ k ≤ K , the Gamow vector term

∞∑

n=−∞
ei3/2√−λk+nωi|x|Ak,ne

−λkt+nωit

is a generalized eigenvector of the Hamiltonian, in the sense that it solves (1), but grows
exponentially (in a prescribed fashion) for large |x|.

Proposition 2.2 For small r there is only one array of resonances, i.e. K = 1. The as-
ymptotic position of the array of resonances and a similar result for large ω are given in
Sect. 3.4.

As r ∈ R varies continuously, no resonance can appear or disappear while away from
the imaginary line on the non-principal Riemann sheet, and the position of each resonance
changes continuously on the Riemann sheet.

In the above formulas the branch of the square root is chosen to be the usual one: arg(z) ∈
(−π,π] and arg(

√
z) ∈ (− π

2 , π
2 ]. We refer to this choice of branch when we use the phrase

“usual (choice of) branch” in this paper.
For small r we calculate asymptotically the position of the resonance, which is related

to the ionization rate. For generic r we will give numerical results showing that the Gamow
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vector terms exist for some but not all r , and we plot the graph of the positions of resonances
with different amplitudes (see Sect. 4).

Remark 2.3 Theorem 2.1 and its corollaries generalize to the case where

V (x, t) = ∓2Aδ(x)

(

1 + 2
K0∑

k=1

(rk cos kωt + sk sinkωt)

)

.

Remark 2.4 Borel summation [8] is a canonical extension of usual summation in the sense
that it preserves all properties of usual summation. It provides an exact and unique repre-
sentation for the wave function, a rigorous definition for Gamow vectors and resonances,
as well as practical ways to calculate its asymptotic behavior (e.g. least term truncation, cf.
[21, 27]). Though relatively new, Borel summation has become a standard method for inter-
preting divergent series in the study of various physical systems and phenomena, including
the Zeeman effect [17], hydrogen molecular ion [17], and in particular resonances [22, 23].
However, in the existing literatures Borel summation is used only to study perturbation se-
ries, while in our paper we obtain an exact Borel-summable expansion in time t for the
wave function. Methods based on perturbation theory, such as those in [19] and [16], only
uncovers one or a few resonances, while the Borel-summable expansion in this paper gives
all resonances.

3 Proof of Main Results

3.1 Integral Reformulation of the Equation

We first consider the Laplace transform in t

ψ̂(x,p) =
∫ ∞

0
e−ptψ(x, t)dt.

The existence of this Laplace transform (for Re(p) > 0) follows from the existence of a
strongly differentiable unitary propagator (see Theorem X.71, [6] vol. 2, p. 290, see also [7],
[27] and [15]). As we will see, Theorem 1 follows from analyzing the singularities (poles
and branch points) of the analytic continuation of ψ̂(x,p).

Performing this Laplace transform on (1), we obtain

ipψ̂(x,p) − iψ0(x) = − ∂2

∂x2
ψ̂(x,p) − 2δ(x)ψ̂(x,p) − 2rδ(x)ψ̂(x,p − iω)

− 2rδ(x)ψ̂(x,p + iω). (3)

We then rewrite the above ordinary differential equation as an integral equation by in-
verting the operator ∂2

∂x2 + ip. We have

ψ̂(x,p) =
√

ie−i3/2√
px

2
√

p

∫ x

+∞
ei3/2√

psg(s)ds −
√

iei3/2√
px

2
√

p

∫ x

−∞
e−i3/2√

psg(s)ds

where

g(x) = iψ0(x) − 2δ(x)ψ̂(x,p) − 2rδ(x)ψ̂(x,p − iω) − 2rδ(x)ψ̂(x,p + iω).
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Recalling that
∫ ∞

−∞ δ(x)f (x)dx = f (0), we simplify the above integral equation and
obtain

ψ̂(x,p) = e−i3/2√
px

2i−3/2√p

∫ x

+∞
ei3/2√

psψ0(s)ds − ei3/2√
px

2i−3/2√p

∫ x

−∞
e−i3/2√

psψ0(s)ds

+
√

iei3/2√
p|x|

√
p

(
ψ̂(0,p) + rψ̂(0,p − iω) + rψ̂(0,p + iω)

)
. (4)

Letting x = 0 we get an equation for ψ̂(0,p)

ψ̂(0,p) = i3/2

2
√

p

∫ 0

+∞
ei3/2√

psψ0(s)ds − i3/2

2
√

p

∫ 0

−∞
e−i3/2√

psψ0(s)ds

+
√

i√
p

(
ψ̂(0,p) + rψ̂(0,p − iω) + rψ(0,p + iω)

)
(5)

which implies

√
i√
p

(
ψ̂(0,p) + rψ̂(0,p − iω) + rψ(0,p + iω)

)

= ψ̂(0,p) − i3/2

2
√

p

∫ 0

+∞
ei3/2√

psψ0(s)ds − i3/2

2
√

p

∫ 0

−∞
e−i3/2√

psψ0(s)ds. (6)

Substituting (6) in (4) we get

ψ̂(x,p) = ei3/2√
p|x|ψ̂(0,p) + f (x,p) − ei3/2√

p|x|f (0,p) (7)

where

f (x,p) = i3/2e−i3/2√
px

2
√

p

∫ x

+∞
ei3/2√

psψ0(s)ds − i3/2ei3/2√
px

2
√

p

∫ x

−∞
e−i3/2√

psψ0(s)ds.

Equation (7) indicates that the analytic continuation of ψ̂(x,p), as well as its singu-
larities, follows naturally from that of ψ̂(0,p), so it suffices to analyze ψ̂(0,p) using the
recurrence relation (5). Later we will perform the inverse Laplace transform on ψ̂(x,p),
justified by estimating ψ̂(0,p) and f (x,p) for large p. We will then deform the contour of
the Bromwich integral, which yields the expression in Theorem 2.1. It is worth noting that to
deform the contour it suffices to place a branch cut of the square root in the left half complex
plane, while to analyze the singularities of ψ̂(0,p) we need to consider a larger region in
the Riemann surface. Some delicate points of the analysis stem from the complexity of the
Riemann surface, since, as we will see, ψ̂(0,p) has infinitely many branch points and there
appears to be a barrier of singularities on the non-principal Riemann sheet.

3.2 Recurrence Relation and Analyticity of ψ̂

We rewrite the recurrence relation (5) as
(√−i

√
p − 1

)
ψ̂(0,p) = rψ̂(0,p − iω) + rψ̂(0,p + iω) + √−i

√
pf (0,p).
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We will show that f (0,p) = ψ0(0)

p
+O( 1

p3/2 ) as p → ∞ in any direction in the right half

complex plane (see Sect. 3.6). It is not a priori clear that ψ̂(0,p) has an inverse Laplace
transform. We thus let ψ̃(p) = ψ̂(0,p) − f (0,p). The recurrence relation for ψ̃ is

(√−i
√

p − 1
)

ψ̃(p) = rψ̃(p − iω) + rψ̃(p + iω) + (1 + 2r)f (0,p). (8)

It is convenient to write the recurrence relation in a difference equation form. Denoting
p = i + inω + z , yn(z) = ψ̃(i + inω + z), and fn(z) = (1 + 2r)f (0, i + inω + z), we have

(√−i
√

i + inω + z − 1
)

yn(z) = ryn−1(z) + ryn+1(z) + fn(z). (9)

The associated homogeneous equation is of course
(√−i

√
i + inω + z − 1

)
yn(z) = ryn−1(z) + ryn+1(z). (10)

Let z0 be a branch point closest to 0, that is, a point on the imaginary axis satisfying
−z0i = infn{|1 + nω|} (note that |z0| ≤ ω

2 ), and let n0 be the corresponding n. Since clearly
yn(z) = yn+1(z − iω) = yn−1(z + iω), it suffices to consider Im(z) ∈ (− 4

5ω, 4
5ω) for the

usual branch. In general, if we make a branch cut at (eiθ∞, z0) (cos θ 	= 0) we consider the
strip-shaped region {|Im(z) − ρ sin θ | < 4

5 ω,Re(z) =ρ cos θ,ρ ∈ R}.
To analytically continue y := {yn}, we consider the Hilbert space H defined by

‖x‖2
H =

∞∑

n=−∞
(1 + |n|3/2)|xn|2

and the operator Cm : H → H

(Cmy)n(z) = (1 + m
√

i)yn(z) + ryn−1(z) + ryn+1(z)

(
√−i

√
i + inω + z + m

√
i)

(m ∈ Z
+).

It is easy to see that Cm is entire in r and analytic in
√

z − z0 in the region Re(z) >

−m2, Im(z) ∈ (− 4
5ω, 4

5ω).

Lemma 3.1 Cm is a compact operator for any choice of branch.

Proof For arbitrarily large N ∈ N, we consider the finite rank operator Dm,N : H → H

(Dm,N y)n =
{

(Cmy)n, |n| < N

0, otherwise.

It is easy to check that

‖Cm − Dm,N‖ = O(N−1/2).

Therefore Cm, being the limit of finite rank operators in operator norm, is compact. �

Lemma 3.2 The equation
(√−i

√
i + inω + z − 1

)
yn(z) = ryn−1(z) + ryn+1(z) + gn(z)
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has a unique solution in H for |Re(z)| > (2r + 1)2, for all g ∈ H. In particular, (9) has
a unique solution and (10) has only the trivial solution y = 0. The conclusion holds as
well if z 	= 0 and r is sufficiently small. Furthermore, for large |Re(z)| we have |y| =
O(|Re(z)|−1/2|g|) where |x| := supn |xn|.

Proof Note that under the assumptions above, the norm of the linear operator S : H → H

(S y)n(z) = ryn−1(z) + ryn+1(z)

(
√−i

√
i + inω + z − 1)

is smaller than 1, since |√−i
√

i + inω + z−1| ≥ |√i + inω + z|−1 ≥ √|Re(z)|−1 > 2r .
We then have

y = (I − S)−1g

(
√−i

√
i + inω + z − 1)

. �

Proposition 3.3 For every r ∈ C, there are at most finitely many z = z1, . . . , zlr for which
the homogeneous equation (10) has a nonzero solution y in H. For all other z, there exists a
unique solution to (9). The function

√
z − z0y is analytic in both

√
z − z0 and r , and it can be

analytically continued on the Riemann surface of
√

i + inω + z to arg z ∈ (−3π/2,3π/2).
(in other words, one can rotate the branch cut in the left half complex plane). Moreover,
z1, . . . , zlr are either poles ( in

√
z − z0) or removable singularities of y, and yn (n 	= n0) is

analytic in
√

z − z0 when z is close to z0.

Proof We consider the equation

y[m] = Cmy[m] + 1

(
√−i

√
i + inω + z + m

√
i)

f.

Since Cm is compact, analytic in both r and
√

z − z0, and invertible for |Re(z)| >

(2r + 1)2, it follows from the analytic Fredholm alternative (see [6] vol. 1, Theorem VI.14,
p. 201) that the proposition is true for every y[m] (note that the solution of the inhomoge-
neous equation exists for |Re(z)| > (2r + 1)2, thus there can only be finitely many isolated
singularities). Uniqueness of the solution implies y[m] = y[m+1] for all r ∈ C,Re(z) > −m2.
Thus we naturally define the analytic continuation of the solution to be y := y[m]. Analytic
continuation on the Riemann surface follows from the fact that for fixed r, z (z not on the
branch cut) slightly rotating the branch cut does not change the value of

√
i + inω + z for

any n ∈ Z. Uniqueness of the solution thus ensures y also remains unchanged.
Assume yn(z) ∼ bn(z − z0)

−1/2 as z → z0. It is easy to see from (9) that
(√−i

√
i + inω + z − 1

)
bn = rbn−1 + rbn+1 (n 	= n0),

(√−i
√

i + in0ω + z0 − 1
)

bn0 = rbn0−1 + rbn0+1 − (1/2 + r)i3/2
∫ ∞

−∞
ψ0(x)dx.

The unique solution of this recurrence relation is obviously

bn0 = (1/2 + r)i3/2
∫ ∞

−∞
ψ0(x)dx, bn = 0 (n 	= n0). �

Corollary 3.4 For every r ∈ C, (8) has a unique solution ψ̃ .
√

pψ̃ is meromorphic in p with
square root branches at every inω (n ∈ Z) and poles at {pk + inω} (k = 1,2, . . . , lr , n ∈ Z).
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Proof In order to recover p = i + inω + z from the solution to (9), we only need to show
yn(z) = yn∓1(z ± ωi). To this end, note that by (9) we have

(√−i
√

i + inω + z − 1
)

yn∓1(z ± ωi)

= ryn∓1−1(z ± ωi) + ryn∓1+1(z ± ωi) + fn∓1(z ± ωi) (11)

which is the same equation as (9) since fn∓1(z ± ωi) = fn.
Thus, uniqueness of the solution (Proposition 3.3) implies yn(z) = yn∓1(z ± ωi). Note

that we need to choose the same branch for all
√

i + inω + z. �

We conclude this section with a few observations about the positions of the poles of ψ̃ ,
including the well-known result of complete ionization (see [5, 7, 15]).

Proposition 3.5 For r > 0, y has no pole on the imaginary axis or the right half complex
plane, with the usual choice of branch.

Proof In view of Proposition 3.3, we only need to show the homogeneous equation (10) has
no nonzero solution in H. Multiplying (10) by yn(z) and summing in n we get

∞∑

n=−∞

(√−i
√

i + inω + z − 1
)

|yn|2 = 2r

∞∑

n=−∞
Re(yn−1yn)

which implies
∞∑

n=−∞

√−i
√

i + inω + z|yn|2

must be real.
If Re(z) ≥ 0 then Im(

√−i
√

i + inω + z) ≤ 0 for all n and Im(
√−i

√
i + inω + z) < 0

for all n < −(1 + |z|)/ω. Thus yn = 0 for all n < −(1 + |z|)/ω and (10) implies y = 0. �

Proposition 3.6 For r > 0, y has no pole on the imaginary axis for any choice of branch.

Proof Similar to the above. Note that Re(z) = 0 implies Im(
√−i

√
i + inω + z) = 0 for all

n > −(1 + Im(z))/ω and Im(
√−i

√
i + inω + z) has the same sign (and nonzero) for all

n < −(1 + Im(z))/ω. �

Proposition 3.7 Solutions of the homogeneous equation (10) exist in negative conjugate
pairs, in the sense that if z1 is a pole of ψ̃ , then −z1 is also a pole (with a different choice of
branch, see proof and comments below).

Proof Simply note that (−i)1/2
√

i + inω + z = (−i)1/2
√

i + inω − z if we choose the
branches in such a way that in the upper half complex plane the two square roots are the
same, while in the lower half plane they are opposite. �

In view of the above propositions, we will concentrate our study of resonances on the left
half complex plane. The author believes that the imaginary line on the non-principal Rie-
mann surface is a singularity barrier, and the Proposition 3.7 provides a pseudo-analytic
continuation across the barrier. We will not discuss the details in this paper.
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3.3 The Homogeneous Equation

As we mentioned in the introduction, poles of y in the left half complex plane correspond
to resonances of the system. According to Proposition 3.3, finding these poles is essentially
the same as finding solutions to the homogeneous equation (10) in H.

Lemma 3.8 Assume the nonzero vector u = {un} satisfies the homogeneous recurrence re-
lation (10), and that

∞∑

n=0

(1 + |n|3/2)|un|2 < ∞.

Assume also that the nonzero vector v = {vn} satisfies (10) and

0∑

n=−∞
(1 + |n|3/2)|vn|2 < ∞.

Then the homogeneous equation (10) has a nonzero solution in H if and only if the dis-
crete Wronskian W := unvn+1 − vnun+1 = 0. The solution, if it exists, is a constant multiple
of u (or equivalently v).

Proof If r = 0 the lemma is trivial. Assume r > 0. We first note that the recurrence relation
(10) implies

(1) W is independent of n.
(Note that (unvn+1 − vnun+1) − (un+1vn+2 − vn+1un+2) = vn+1(un + un+2) − un+1(vn +
vn+2) = (

√−i
√

i + inω + z − 1)/r(vn+1un+1 − un+1vn+1) = 0.)
(2) For any n and any nonzero vector x satisfying that recurrence relation, we have |xn|2 +

|xn+1|2 	= 0, |xn|2 + |xn+2|2 	= 0 (n 	= −1).

Now assume W = 0. Since v is nonzero, there exists m for which vm 	= 0. Thus we have
um±1 = (um/vm)vm±1. Since u 	= 0 we must have um 	= 0, for otherwise um±1 = um = 0. If
vm±1 = 0 then um±1 = 0, which implies |um − (um/vm)vm|2 + |um±1 − (um/vm)vm±1|2 = 0,
meaning u = (um/vm)v. If vm±1 	= 0 then um±1 	= 0, which inductively implies again u =
(um/vm)v. Therefore u solves (10) in H.

If W 	= 0 then clearly u and v are the two linearly independent solutions of the second or-
der difference equation (10). Furthermore, we have lim infn<0 |un| > 0 and lim infn>0 |vn| >

0, since lim supn>0 |un| < const.|n|−3/4 and lim supn<0 |vn| < const.|n|−3/4 but unvn+1 −
vnun+1 is a nonzero constant. Therefore no nonzero linear combination of u and v can be
in H. Since a second order difference equation cannot have any other solution, there is no
nonzero solution of (10) in H. �

We now give a constructive description of u and v. For convenience let hn(z) =
(
√−i

√
i + inω + z − 1). We choose n1,2 ∈ Z so that |hn| > 2|r| for all n ≥ n1 > 0 and

n ≤ n2 < 0. Let I be the identity operator. We define H1,2 by

‖x‖2
1 =

∞∑

n=n1

(1 + |n|3/2)|xn|2,
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‖x‖2
2 =

n2∑

n=−∞
(1 + |n|3/2)|xn|2.

Proposition 3.9 There exist u and v, analytic in r and ramified analytic in z, satisfying
the conditions described in Lemma 3.8. Moreover, u(z ± ωi) = const.u(z) and v(z ± ωi) =
const.v(z).

Proof Let T1 : H1 → H1

(T1y)n =
{

r
hn

(yn−1 + yn+1), n > n1,
r
hn

yn+1, n = n1.

Let a = (r/hn1 ,0,0, . . .) ∈ H1.
The equation

u = T1u + a

has a unique solution

u = (I − T1)
−1a = a + T1a + T 2

1 a · · ·
since clearly ‖T1‖ < 1. It is easy to see that u satisfies

un =
{

r
hn

(un−1 + un+1), n > n1,
r
hn

(un+1 + 1), n = n1.

Thus the recurrence relation

un = hn

r
un+1 − un+2

extends u to a solution of the homogeneous equation (10). In particular un1−1 = 1. This
solution u is analytic in r and z (ramified) locally since T1 and hn are analytic in r and z

(ramified), and the uniform limit of analytic functions is analytic. As r or |Im(z)| increases
we may analytically continue u by considering some n3 > n1 so that |hn| > 2|r| for all
n ≥ n3. Using the same procedure as we did for n1 we get ũ. It is easy to see that u = un3 ũ
for they both satisfy the contractive recurrence relation (in the sup norm)

un =
{

r
hn

(un−1 + un+1), n > n3,
r
hn

(un+1 + un3), n = n3.

Note that this implies un 	= 0 for large n.
The analytic continuation of u is, up to a scalar multiple, periodic in z. Note that u±(z) =

u(z ± ωi) satisfies (for large n3 > n1)

u±
n =

{
r

hn±1
(u±

n−1 + u±
n+1), n > n1,

r
hn±1

(u±
n+1 + u±

n3
), n = n3

while u satisfies

un±1 =
{

r
hn±1

(un±1−1 + un±1+1), n > n3,

r
hn±1

(un±1+1 + un3±1), n = n3.
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Thus u(z ± ωi) = un3 (z±ωi)

un3±1(z)
u(z).

The construction of v is very similar, namely v = (I − T2)
−1b where T2 : H2 → H2

(T2y)n →
{

r
hn

(yn−1 + yn+1), n < n2,
r
hn

yn−1, n = n2

and b = (. . . ,0,0, r/hn2). �

Proposition 3.10 W is analytic in r and ramified analytic in z. Moreover, W(z) = 0 if and
only if W(z ± ωi) = 0.

Proof The first part is obvious. The second part follows from the relation u(z ± ωi) =
un3 (z±ωi)

un3±1(z)
u(z) (see the proof of the previous proposition) and the fact that un3 	= 0. �

Remark 3.11 Another way of constructing u and v is by using continued fractions, see
[5]. The continued fraction expression is slightly simpler in this particular case, but our
iteration method can be easily generalized to trigonometric polynomial potentials mentioned
in Sect. 2.

3.4 Resonance for Small r

We assume r > 0 and analyze the resonances of the system for small r (relative to ω) by
locating zeros of W , in view of Lemma 3.8. Since we will need to consider different branch
choices, we write for convenience hn(z) = ((−i)1/2

√
i + inω + z− 1) where the power 1/2

always indicates the usual choice of branch.

Lemma 3.12 For every choice of branch, there exists a constant c so that when ω > c(r +
r2), we have |hn| > 2r for all n 	= 0.

Proof Recall that for a branch cut at (eiθ∞,z0) (cos θ 	= 0), we consider the strip-shaped
region �b := {|Im(z) − ρ sin θ | < 4

5ω,Re(z) = ρ cos θ,ρ ∈ R}. It is easy to see that c1 :=
infn	=0,z∈�b

| z
ω

− in| > 0. Therefore |hn(z)| = |(−i)1/2
√

i + inω + z − 1| = |inω+z|
|√i+inω+z+√

i| ≥
|inω+z|√|inω+z|+2

≥ c1ω√
c1ω+2 > 2r if

√
c1ω > 2r + 2

√
r . Note that x2

x+2 is an increasing function for
x > 0. �

Proposition 3.13 For small r , there is a unique nonzero solution of the homogeneous equa-
tion (10) in the left half complex plane with the usual choice of branch. Moreover, the solu-
tion satisfies

z =
(

2i

(1 + ω)1/2 − 1
− 2i

i−1/2
√

(1 − ω)i − 1
+ σ(r)

)

r2

where σ(r) is analytic in r and σ(0) = 0.

Proof We choose n1 = 1, n2 = −1 to construct u and v. Thus u0 = v0 = 1 and W = v1 −u1.
We calculate by iterations

u1 = r

h1
+ r3

h2
1h2

+ r5

h5
1

R1,
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v1 = h0

r
− v−1 = h0

r
− r

h−1
− r3

h2
−1h−2

− r5

h5
1

R2,

W = h0

r
− r

h−1
− r

h1
− r3

h2
1h2

− r3

h2
−1h−2

− r5

h5
1

R1 − r5

h5
1

R2

where R1,2 are bounded for ω > c(r + r2). Note that |h0(z)| = |√i + z − i1/2| ≥ |z|/2 and
| r
hn

| ≤
√

c1ω+2
c1ω

r for all n 	= 0.

Now, if ω is fixed and r is small, W = 0 implies h0(z) = O(r2). Hence we must have
z = O(r2). In addition, we need to make the choice of branch so that

√
i is in the first

quadrant. Thus we let z = (a0 + σ)r2 where σ = o(1), and we see that

W

r
=

(
a0

2i
− 1

(1 + ω)1/2 − 1
− i1/2

√
(1 − ω)i − i1/2

)

(1 + o(1)).

Thus we have

a0 = 2i

(1 + ω)1/2 − 1
− 2i

i−1/2
√

(1 − ω)i − 1
.

For small r , W is clearly analytic in both r and σ . Since the value of W depends only
on

⋃
n{z : |z − inω| < 2a0r

2}, there are exactly two different W with different choices of
branch, namely W1 : Re(

√
i) > 0,Re(

√−i) > 0 and W2 : Re(
√

i) > 0,Re(
√−i) < 0. How-

ever, according to Proposition 3.6 and Proposition 3.7, they are in fact negative conjugates
to each other, and only one will be in the left half complex plane. We thus take W = W1 for
its branch is consistent with the usual branch.

It is easy to verify that

W

r

∣
∣
∣
∣
r=0,σ=0

= 0,

∂

∂σ

(
W

r

)∣
∣
∣
∣
r=0,σ=0

= − i

2
	= 0.

Therefore it follows from the implicit function theorem that the position of the zero of
W is given by

z =
(

2i

(1 + ω)1/2 − 1
− 2i

i−1/2
√

(1 − ω)i − 1
+ σ(r)

)

r2

where σ(r) is analytic in r and σ(0) = 0.
σ(r) can be found asymptotically by iterating σ(r) − 2iW

r
as in the standard proof of the

implicit function theorem.
Since the usual choice of branch is consistent with W , the zero of W is visible. �

Corollary 3.14 For r small and ω > 1, the position of the resonance satisfies λ1 ∼
− 2

√
ω−1
ω

r2 − 2
√

ω+1
ω

r2i.
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Proof The corollary follows from the expression of a0 with the usual choice of branch. The
fact that it is indeed a resonance, i.e. a pole of y, will be established in the next subsection. �

Remark 3.15 In the case ω  1 + r2, an analogous analysis shows that the position of the
resonance is given by λ1 ∼ − 2r2√

ω
− 2r2i√

ω
.

Proposition 3.16 For small r the poles (in one vertical array) of ψ̃ are simple and the
residues are nonzero for generic f.

Proof We note that the order of the pole of (I − Cm)−1 equals the order of the corresponding
zero of I − Cm, which is a constant by the argument principle (see Lemma 3.18 below), since
I − Cm is analytic in z. It is easy to verify that when r = 0 the zero of I − Cm is of order
one. Thus the poles are simple.

Let z = G(r) be the continuous functions satisfying W(G(r), r) = 0, G(0) = 0. We
consider the residue

P (r) = 1

2πi

∮

|ζ−G(r)|=ε

y0(ζ, r)dζ.

Obviously P (r) is analytic in r . For generic f, P (0) 	= 0 (in which case y can be found
explicitly). Thus P (r) 	= 0 for small r . �

3.5 Resonances in General

Having analyzed the zeros of W for small r , we proceed to consider the case for general r ,
as well as the poles of y.

For convenience we study the region �θ,ε := {z : Im(z) ∈ [ρ sin θ + z0
2 − 1

2ω+ε,ρ sin θ +
z0
2 + 1

2ω + ε),Re(z) = ρ cos θ,ρ ∈ R}⋂{z : |Re(z)| < (2|r| + 2)2}, the branch cut being
placed at (eiθ∞,z0) (cos θ 	= 0). It is easy to see that there is exactly one zero and one
branch point inside this region for small r (cf. Sect. 3.4). We note that as long as z is not
located on a branch cut, we may rotate the cut slightly without changing W .

Lemma 3.17 For every r , W has finitely many zeros in
⋃

| cos θ |>cb>0 �θ,ε where cb is arbi-
trary.

Proof By Lemma 3.2, there is no zero for |Re(z)| > (2|r| + 1)2 and the zeros are isolated.
Since the Riemann surface of the square root has only two sheets and the region �θ,ε is
bounded, W can only have finitely many zeros. �

Lemma 3.18 Assume for some r0 and arbitrarily small ε > 0, with the branch choice
arg(z) ∈ (θ − ε, θ + 2π + ε) (−2π < θ ≤ 2π , cos θ 	= 0), W has finitely many zeros in
�θ,ε . Then the number of zeros remains a constant if r is close to r0. Furthermore, each zero
moves continuously with respect to r .

Proof The lemma follows from standard complex analysis arguments. Suppose W(z, r0)

has zeros z1, z2, . . . , zm inside �0 and z̃m+1, . . . , z̃m+l on ∂�0. Since z ∈ �θ,ε − �θ,0 iff
z − iω ∈ �θ,0 − �θ,ε , we let zm+k = z̃m+k + iω (1 ≤ k ≤ l). We may choose small ε > 0
so that W(z, r0) has zeros z1, z2, . . . , zm+l in �θ,ε for arg(z) ∈ (θ − ε, θ + 2π + ε), and no
other zero in �θ,2ε for arg(z) ∈ (θ − 2ε, θ + 2π + 2ε). Let 0 < δ < ε be small so that there
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is at most one zero or branch point inside any circle of radius 2δ, and W(z, r0) is analytic
(with a suitable choice of branch) in |z − zn| < 2δ. Since W is analytic in both z and r , it
follows from the argument principle that for r very close to r0

Mn(r) = 1

2πi

∮

|ζ−zn|=δ

∂
∂ζ

W(ζ, r)

W(ζ, r)
dζ = 1.

Now we consider the compact region �′ := {z : arg(z) ∈ [θ − ε, θ + 2π + ε]}⋂
�θ,ε \⋃m

n=1{z : |z − zn| < δ}. Clearly |W(z, r0)| > 0 for all z ∈ �′. Since W is jointly uniformly
continuous in z and r , we have |W(z, r)| > 0 for all z ∈ �′, r close to r0.

Thus the number of zeros is locally a constant and they move continuously with respect
to r . �

Proposition 3.19 For every r there are finitely many zeros of W in any strip {z : Im(z) ∈
[z̃, z̃ + ω),Re(z) ∈ R} for all choices of branch within | cos θ | > cb > 0, and the position of
each zero changes continuously with respect to r .

Proof The conclusion follows from Proposition 3.10, Lemma 3.17 and 3.18. Note that we
may choose θ arbitrarily, thus covering the whole Riemann surface (except for the imaginary
lines). �

Remark 3.20 Since W is analytic in r and ramified analytic in z, we expect the zeros of W

to be analytic or ramified analytic in r , in view of the Weierstrass preparation theorem in
several complex variables (see, for instance, [24] for details). However, we omit the proof
in this paper.

As we have shown in Proposition 3.3 and Lemma 3.8, all poles of y are located where
W = 0. We summarize the results as

Proposition 3.21 For generic r and f, y(z, r) has finitely many arrays of poles for any
choice of branch with | cos θ | > cb > 0. Their residues Ak,n satisfy the recurrence relation

(
(−i)1/2

√
i + nωi − λ1 − 1

)
Ak,n = rAk,n−1 + rAk,n+1

and Ak ∈ H.

Proof The first part is simply a rephrasing of previous results (cf. Proposition 3.19). The
recurrence relation for residues follows from the fact that

Ak,n = 1

2πi

∮

|ζ−G(r)|=ε

yk,n(ζ, r)dζ

satisfies the homogeneous equation (10) since y satisfies (9) and

∮

|ζ−G(r)|=ε

fn(ζ, r)dζ = 0.

The above expression for Pn also implies Ak ∈ H since, by Hölder’s inequality
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∞∑

n=−∞
(1 + |n|3/2)|Ak,n|2

≤
∞∑

n=−∞
(1 + |n|3/2)

∮

|ζ−G(r)|=ε

|yn(ζ, r)|2d|ζ |

=
∮

|ζ−G(r)|=ε

∞∑

n=−∞
(1 + |n|3/2)|yn(ζ, r)|2d|ζ | ≤ sup

|ζ−G1(r)|=ε

‖y(ζ, r)‖2 < ∞

the last inequality following from the continuity of y (see also Sect. 3.6 below). �

3.6 Proof of Theorem 1

As we have mentioned before, we will take the inverse Laplace transform of ψ̂ and deform
the contour, collecting contributions from the poles in the process. We first provide the
necessary estimates.

Lemma 3.22 Assume suppψ0 ∈ [−M,M], then
√

pf (x,p), where f (x,p) is as defined in
Sect. 2, is analytic in

√
p with a square root branch at zero. Moreover,

f (x,p) = ψ0(x)

p
+ O(p−3/2) + O(p−3/2eMi3/2√

p)

for large |p|.

Proof By integration by parts we have

f (x,p) = ψ0(x)

2p
− e−i3/2√

px

2p

∫ x

+∞
ei3/2√

psψ ′
0(s)ds

+ ψ0(x)

2p
− ei3/2√

px

2p

∫ x

−∞
e−i3/2√

psψ ′
0(s)ds

= ψ0(x)

p
− ψ ′

0(x)

2i3/2p3/2
+ e−i3/2√

px

2i3/2p3/2

∫ x

+∞
ei3/2√

psψ ′′
0 (s)ds

+ ψ ′
0(x)

2i3/2p3/2
− ei3/2√

px

2i3/2p3/2

∫ x

−∞
e−i3/2√

psψ ′′
0 (s)ds

= ψ0(x)

p
+ i−3/2

2p3/2

∫ 0

+∞
ei3/2√

puψ ′′
0 (u + x)du − i−3/2

2p3/2

∫ 0

−∞
e−i3/2√

puψ ′′
0 (u + x)du.

The lemma then follows. �

Lemma 3.23 ψ̃(p) satisfies

(1) For any compact region �1 ∈ C which does not contain any pole of ψ̃(p), we have

sup
p∈�1

∞∑

n=−∞
(1 + |n|3/2)|ψ̃(p + nωi)|2 < ∞.



584 M. Huang

In particular,

sup
p∈�1

∞∑

n=−∞
|ψ̃(p + nωi)| < ∞.

(2) For any c ≥ 0,
∫ c+i∞

c−i∞ |ψ̃(p)|dp < ∞.
(3) For |Re(p)| > (2r + 1)2 we have

ψ̃(p) = p−1/2O (f (0,p)) = O
(
p−3/2

) + O
(
p−2eMi3/2√

p
)

.

Note that the p−1/2 behavior of ψ̃(p) near the origin does not affect the nature of these
estimates, so we omit further discussions of that special case.

Proof (1) Recall that ψ̃(i + nωi + z) = yn(z) and that y ∈ H, i.e.

‖y‖2 =
∞∑

n=−∞
(1 + |n|3/2)|yn|2 < ∞.

Since y is continuous in z on the Riemann surface of the square root, so is ‖y‖. Compactness
of �1 then implies supp∈�1

‖y‖ < ∞, from which the first part follows. The second part
follows from the Cauchy-Schwarz inequality

∞∑

n=−∞
sup
p∈�1

|ψ̃(p + nωi)|

=
∞∑

n=−∞
(1 + |n|3/2)−1/2(1 + |n|3/2)1/2 sup

p∈�1

|ψ̃(p + nωi)|

≤
∞∑

n=−∞
(1 + |n|3/2)−1

∞∑

n=−∞
(1 + |n|3/2) sup

p∈�1

|ψ̃(p + nωi)|2 < ∞.

(2) Note that by Fubini’s theorem and Cauchy-Schwarz inequality (cf. part (1)) we have

∫ c+i∞

c−i∞

∣
∣
∣ψ̃(p)

∣
∣
∣dp =

∞∑

n=−∞

∫ 1

0

∣
∣
∣ψ̃(c + nωi + si)

∣
∣
∣ds

=
∫ 1

0

∞∑

n=−∞

∣
∣
∣ψ̃(c + nωi + si)

∣
∣
∣ds

≤ sup
p∈[c−si,c+si]

∞∑

n=−∞
|ψ̃(p + nωi)| < ∞.

(3) The conclusion follows from Lemma 3.2 and Lemma 3.22. �

Proposition 3.24 ψ(x, t) = 1
2πi

∫
C1

ei3/2√
p|x|+pt ψ̃(p)dp + 1

2πi

∫
C2

eptf (x,p)dp, where the
contours C1,2 are as shown in Figs. 1 and 2. In the process of deforming the first contour, we
collect contributions from the poles and we slightly rotate the branch cut by a small angle θ

if a pole sits on the usual branch cut.
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Fig. 1 Contour C1, which
consists of infinitely many
horizontal and vertical line
segments surrounding the branch
cuts (dotted lines) and poles (“×”
marks). C1 is deformed from the
original contour (vertical line to
the right of the imaginary axis) of
the Bromwich integral

Fig. 2 Contour C2

Proof We first note that

sup
Im(p)≥0

∣
∣
∣ei3/2√

p|x|
∣
∣
∣ = 1
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and

sup
Im(p)<0,s∈R

∣
∣
∣ei3/2√

p+is|x|
∣
∣
∣ ≤ sup

v∈R

∣
∣
∣ei3/2√−Im(p)(−1+iv)|x|

∣
∣
∣ = ec1|x|√−Im(p)

where c1 = supv∈R
Re(i3/2

√
(−1 + iv)) < ∞.

Now, by the Bromwich integral formula

ψ(x, t) = 1

2πi

∫ c+i∞

c−i∞
ept ψ̂(x,p)dp

= 1

2πi

∫ c+i∞

c−i∞
ei3/2√

p|x|+pt ψ̃(p)dp + 1

2πi

∫ c+i∞

c−i∞
eptf (x,p)dp.

By Lemma 3.22 we have

1

2πi

∫ c+i∞

c−i∞
eptf (x,p)dp

= ψ0(x)

2πi

∫ c+i∞

c−i∞

ept

p
dp + 1

2πi

∫ c+i∞

c−i∞
ept

(

f (x,p) − ψ0(x)

p

)

dp

= ψ0(x) + 1

2πi

∫

C2

ept

(

f (x,p) − ψ0(x)

p

)

dp = 1

2πi

∫

C2

eptf (x,p)dp.

As for the first contour, we only need to show that (along both sides of the branch cuts)

∞∑

n=−∞

∫ −qeiθ

0
ei3/2√

s+nωi|x|+st+nωit ψ̃(s + nωi)ds < ∞,

∞∑

n=−∞

∫ −qeiθ +(n+1)ωi

−qeiθ +nωi

ei3/2√
p|x|+pt ψ̃(p)dp < ∞

and if the resonance is visible with the usual (or slightly rotated) branch cut, then

∞∑

n=−∞
|Ak,n| < ∞.

The first two estimates follow from Lemma 3.23, since
∣
∣
∣
∣
∣

∞∑

n=−∞

∫ −qeiθ

0
ei3/2√

s+nωi|x|+st+nωit ψ̃(s + nωi)ds

∣
∣
∣
∣
∣

≤
(

sup
p∈[0,−qeiθ ]

∞∑

n=−∞
|ψ̃(p + nωi)|

)∫ −qeiθ

0
ec1|x|√|s|+st ds < ∞

and
∣
∣
∣
∣
∣

∞∑

n=−∞

∫ −qeiθ +(n+1)ωi

−qeiθ +nωi

ei3/2√
p|x|+pt ψ̃(p)dp

∣
∣
∣
∣
∣
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≤
∞∑

n=−∞

∫ ωi

0

∣
∣
∣ei3/2

√
−qeiθ +nωi+s|x|−qeiθ t ψ̃(−qeiθ + nωi + s)

∣
∣
∣ds

≤ ec1|x|√|q|−q cos θt

(

sup
p∈[0,ωi]

∞∑

n=−∞
|ψ̃(p + nωi)|

)

< ∞.

The estimates for the resonances follows from Proposition 3.21 and the Cauchy-Schwarz
inequality. Since Ak ∈ H, we have

∞∑

n=−∞
|Ak,n| =

∞∑

n=−∞
(1 + |n|3/2)−1/2(1 + |n|3/2)1/2|Ak,n|

≤
∞∑

n=−∞
(1 + |n|3/2)−1

∞∑

n=−∞
(1 + |n|3/2)|Ak,n|2 < ∞.

�

Corollary 3.25 For t > 0, we may further deform the contour C1 to C3 by pushing the
vertical lines left to infinity.

Proof Note that, in the proof of the previous proposition,
∫ −qeiθ

0 ec1|x|√|s|+st ds is bounded in
Re(q) > 0 and ec1|x|√|q|−q cos θt → 0 as Re(q) → ∞.

Thus we conclude the proof of Theorem 2.1 by taking the differences between the
upper and lower branches to deform the contour integrals into line integrals. To be ex-
act, if we denote Fs(x,

√
p) = f (x,p), ϕ̃n(

√
p − nωi) = ψ̂(0,p − nωi), then we take

F(x,p) = Fs(x,
√

p) − Fs(x,−√
p) and ϕ(p) = ψ̂n(x,

√
p) − ψ̂n(x,

√
p).

The last part the theorem follows immediately from Watson’s Lemma, since F and ϕ are
clearly analytic in

√
p and has sub-exponential growth as Im(p) → −∞ (see Lemmas 3.22

and 3.23). Note also that ψ̃(p) ∼ −(1 + 2r)f (0,p) as p → 0.
Corollary 2.1 follows from a direct calculation using (1) and (2). �

4 Further Discussion and Numerical Results

In this section we study the physical meaning of the resonances, calculate the positions of
the resonances numerically, and discuss the delta potential barrier.

4.1 Metastable States and Multiphoton Ionization

When a resonance is close to but not on the imaginary axis, it corresponds to a metastable
state of the wave function (see [27]). If |x| is not too large, for a moderately long time the
wave function is governed by the Gamow vector terms whose resonances are closest to the
imaginary axis. Thus, for a fixed initial wave function, the real part of these resonances
approximately measure the rate of ionization, that is, the integral of |ψ |2 over a fixed spacial
interval as a function of t .

It has been observed (see [5]) that the rate of ionization changes rapidly when ω is
approximately equal to an integer fraction of the bound state energy (in our case, ω =
1/m, m ∈ N). This phenomenon is related to multiphoton ionization (see [5, 11–13] and
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Fig. 3 Contour C3

the references therein), a process in which an electron escapes from the nucleus by absorb-
ing multiple photons at the same time. Since, as we mentioned in the last paragraph, the
ionization rate can be measured by the position of resonances, we expect a rapid change in
the real part of the resonance λ1 when ω is near 1/m and r is small.

Proposition 4.1 For 1
m+1 < ω ≤ 1

m
, the real part of the resonance is of order r2m+2 for

small r .

Sketch of Proof Recalling Proposition 3.13, we have z ∼ 2i

(1+ω)1/2−1
+ 2i

1−(1−ω)1/2 .

It can be shown by induction that (T k
2 v)−1 is a function of h−1, h−2, . . . , h−[ k

2 ]−1 and of

order rk+1 (the operators T1,2 are as defined in Proposition 3.9). Moreover, (T 2k+1
2 v)−1 = 0

and (T 2k
2 v)−1 	= 0.

For example,

(T 2
2 v)−1 = r3

h2
−1h−2

,

(T 4
2 v)−1 = r5(h−1 + h−3)

h3
−1h

2
−2h−3

.

With the notation z = ( 2i

(1+ω)1/2−1
+ 2i

1−(1−ω)1/2 + σ)r2, we have

hn =
√

1 + nω +
(

2

(1 + ω)1/2 − 1
+ 2

1 − (1 − ω)1/2
− iσ

)

r2 − 1

and Im(
h0
r
) = − r

2 Re(σ )(1 + o(1)). Also note that for −m ≤ n < 0, we have Re(hn) ∼√
1 + nω − 1 and Im(hn) = O(r2Re(σ )), while for n < −m we have hn ∼ −1 +
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Fig. 4 Real part of the resonance as a function of ω

√−1 − nωi. Therefore Im(W) = − r
2 Re(σ )(1 + o(1)) − crr

2m+1(1 + O(r)). Thus we must
have Re(σ ) ∼ const.r2m.

In particular, for 1
3 < ω ≤ 1

2 we have

Re(σ ) ∼ 2
√

3ω − 1r4

3ω(
√

1 − ω − 1)2(
√

1 − 2ω − 1)2
. �

Remark 4.2 In fact, it can be shown by induction that for 1
m+1 < ω ≤ 1

m
we have (see

also [5])

Re(σ ) ∼ 2
√

(m + 1)ω − 1r2m

(m + 1)ω
∏m

k=1(
√

1 − kω − 1)2
.

The above proposition implies that there is indeed a rapid change in the real part of the
resonance. Here we confirm this result with numerical calculations (see Fig. 4) and omit
further details of the proof.

4.2 Position of Resonance: Numerical Results

As we have shown in Sect. 3.4, for small r there is only one resonance in the left half
complex plane, for all choices of branch. This is, however, not always the case for general r .

We demonstrate the position of resonances in the left half plane by numerically calculat-
ing zeros of W for different r . In the graph below we show zeros of W plotted with different
r and choices of branch, with ω = 2. The positions of the roots are found by approximat-
ing W with sufficiently many contractive iterations and using the “FindRoot” function in
Mathematica. The result and accuracy have been checked by (1) increasing the number of
iterations (the position of the roots remains the same) and (2) visually verifying the position
of the roots using density plots of (good approximations of) W .
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Based on these numerical results (mainly the positions of resonances plotted in Fig. 5),
we make the following observations:

(1) Number of resonances
(a) For some values of r , such as those between 0.69 and 0.77, there is no visible res-

onance with the usual choice of branch. In other words, the Gamow vector term in
Theorem 1 is absent. This happens since the resonance that was on the principal
Riemann sheet for 0 < r < 0.69 moved to the non-principal sheet (“×” marks) as
r increased beyond 0.69, while the “new” resonance (“+” marks) will not move to
the principal sheet until r becomes as large as 0.77.

(b) New resonances emerge as r becomes larger. (For instance, when r is near 0.78, the
“old” resonance (“×” marks) has moved to the non-principal Riemann sheet, while
a new one is on the principal sheet.) They can only be “born” from the imaginary
axis, according to Proposition 3.19.

(c) With any given r , there does not seem to be more than one resonance visible with
the usual choice of branch. In other words, a “new” resonance will not move into
the principal Riemann sheet before the “old” resonance moves away. Note that (5)
combines resonances from different r values. In fact, there is only one dot mark
(indicating a resonance on the principal Riemann sheet) for each r .

(2) Position of resonances with respect to r

(a) Resonances always move upward with increasing r . In other words, the imaginary
part of the position of a given resonance is an increasing function of r .

(b) On the principal Riemann sheet, resonances move first away from the imaginary
axis then towards it. New resonances move faster than older ones. These are obvious

Fig. 5 Position of resonances for different r . Dots are resonances for the usual branch, and “×” and “+” are
those resonances continuing on the Riemann surface (they are not visible with the usual branch cut). The “×”
and “+” curves in the middle are on different Riemann sheets. Note that we did not plot more “×” marks
beyond −0.11 + 2.1i due to difficulty in numerical calculation. The resonance will continue to move on the
Riemann surface according to Lemma 3.18
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Fig. 6 Position of resonances for different r for the delta potential barrier

from Fig. 5. The step size for plotting is fixed to be 0.01, thus denser dotted curves
correspond to slower variation of positions.

(c) “Old” resonances do not move arbitrarily close to the imaginary axis with increas-
ing r . Therefore, it is likely that the number of total resonances on the Riemann
surface increases as r becomes larger.

4.3 Delta Potential Barrier

Finally, we briefly discuss the case for the delta potential barrier. The corresponding recur-
rence relation (see (9)) is

(√−i
√

p + 1
)

ψ̂(0,p) = rψ̂(0,p − iω) + rψ̂(0,p + iω) + √−i
√

pf (0,p).

With a change of branch
√

p → −√
p and changes of variables r → −r, f → −f , the

above equation becomes

(√−i
√

p − 1
)

ψ̂(0,p) = rψ̂(0,p − iω) + rψ̂(0,p + iω) + √−i
√

pf (0,p)

which is identical to (9).
Therefore essentially all the theoretical results hold for this case as well. Note, however,

that for small r there is no resonance with the usual choice of branch (which corresponds to
a different choice of branch in the potential barrier case, see Proposition 3.13).

For larger r , we expect the behavior of the wave function to be qualitatively similar to
that with a delta potential well, since the contribution from the time-independent part will
be relatively insignificant compared to the time-dependent part. This is confirmed with the
graph below plotted for different r and ω = 2. We choose the usual branch for simplicity.
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